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Abstract. In a connected graph, nodes can be characterised locally (with their degree k) or globally (e.g.
with their average length path ξ to other nodes). Here we investigate how ξ depends on k. The numerical
algorithm based on the construction of the distance matrix is applied to random graphs and the growing
networks: the scale-free ones and the exponential ones. The results are relevant for search strategies in
different networks.

PACS. 02.10.Ox Combinatorics; graph theory – 05.10.-a Computational methods in statistical physics
and nonlinear dynamics

1 Introduction

Recent interest in analytical and numerical research of
growing networks [1–3] was initiated by a seminal paper of
Barabási and Albert [4]. The authors demonstrated that a
natural algorithm of growing produces a scale-free power
law distribution of the node degree, i.e. of the number
of edges of a node. Moreover, this power law has been
found to appear in several existing networks, as the ac-
tor collaboration network, the WWW, and the power grid
network [4]. Now, many other examples of this universal
pattern has been discovered [3], and the list seems still
open. The idea of a growing network emerges as a new
paradigm of interdisciplinary importance.

The growing process is understood as a successive
adding of new nodes, each linked to older ones by m edges.
When m = 1 a so-called tree appears. A tree is a connected
graph without cyclic paths. For m ≥ 2 — when a newly
attached node is linked to more than one node — cyclic
paths are possible and the formed structure is termed as a
simple graph [5–7]. While the network — a tree or a simple
graph — grows, existing nodes to which the new ones are
linked can be selected preferentially, i.e. with the proba-
bility proportional to their degree. In this case, the degree
distribution is given by the power law, i.e. P (k) ∝ k−γ . If
the nodes are selected randomly, the degree distribution
is exponential, i.e. P (k) = 2−k.

One of the striking features of many growing networks
is the small-world effect [8]. Namely, in such networks the
mean distance d between nodes increases with the num-
ber N of nodes only as ln(N) or slower. For example,
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the actor collaboration network is formed of 449 thousand
nodes; two actors are linked if they happened to play roles
in the same movie. The mean distance d, i.e. the mean
number of links between actors, is less than 3.5 [3].

Actually, the small-world effect in human relations has
been discovered more than 35 years ago in a brilliant so-
ciometric experiment [9,10]. A group of individuals was
asked to send a letter to a target person in Boston via an
acquaintance who was supposed to be closer to the tar-
get than the sender. The mean length of the letter chain
was less than seven. This experiment was repeated several
times [11], and it is currently being continued at Columbia
University [12]. Recently, such considerations happened to
inspire a hierarchical model of a social network [13], where
a contact between different groups within a given hier-
archy is possible only via a person who is higher in the
hierarchy.

In this kind of contact experiment, to find an appro-
priate next person in the path is a nontrivial task, and
several strategies are possible [14,15]. One of the most ob-
vious is to find a person most connected, i.e. a neighbour-
ing node with the highest degree. This strategy has been
shown to be effective in networks with power-law degree
distribution, but not in random graphs [14]. We note here
that all strategies must be ceased once the desired target
is in a reasonably short distance. The discussion below is
conducted with this condition in mind.

In this paper, the problem addressed is if this strategy
is effective in the exponential networks. However, our nu-
merical method is different from the approach applied in
references [14,15]. Here we construct the distance matrix
for a given network. For each node i having the degree k,
we calculate the mean distance ξi to all other nodes in
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the network. For a given kind of network (say, scale-free
networks) we calculate the average of ξi over all nodes
with given degree k. In this way we get a curve ξ(k).
The average distance d can be obtained by averaging ξ(k)
over k. It is obvious that ξ decreases with k, because on
average, the paths from more connected nodes are shorter
than the paths from a node with one or two edges only. If
this decrease is sharp, the strategy of the most connected
neighbour (MCNS) is effective, because the path from the
selected neighbour to other nodes is shorter on average.

It is worth mentioning here, that 1/ξi is a direct mea-
sure of the so-called closeness centrality (CC) for a given
node [16]. A node with high CC is obviously in a good
position to get other nodes on short paths. The MCNS
strategy (termed as MAX in Ref. [15]) is just to increase
the node degree. The slope of the curve ξ(k) then brings
information on how this strategy is effective for a given
network. The effectiveness of MCNS for nodes of given k
can be evaluated by an index

η = − ∂ξ

∂ ln k
. (1)

In principle, the total effectiveness for a given kind
of network should be calculated as an average over all
nodes. In such an average, the majority of nodes have a
low degree. Then, what is relevant is the value of η for low
k. Instead of averaging, we show that curve η(k) carries
all the important information.

In the next section, we describe our method of sim-
ulation. Later on we show the results for the scale-free
networks, the exponential networks and connected Erdös–
Rényi random graphs (CRG) [1,17,18]. The section is
closed by a discussion.

2 Calculations

A standard way of calculating distances between two
nodes is the breadth-first search algorithm [19,20]. Our
numerical approach is based on the construction of the
distance matrix S, an element of which s(i, j) indicates
the length of the shortest path between nodes i and j.
The matrix S is formed simultaneously with the network
growth [21–23].

For the exponential networks, the nodes to which new
nodes are attached are selected randomly. For the scale-
free networks, these nodes are selected preferentially, i.e.
with the probabilities proportional to their degree [4].

For the growing networks, the starting point of the
simulation is a matrix

S =
(

0 1
1 0

)

representing only two nodes linked together. The subse-
quent stages of the construction of the matrix S for grow-
ing trees (m = 1) and growing simple graphs (m = 2) were
described in references [21–23]. Here, we present a similar
algorithm for the construction of the distance matrix S
for Erdös–Rényi CRG [17,18].

We start the simulation with an N × N matrix with
all non-diagonal elements equal to N , which is larger than
the largest possible distance between any of N connected
nodes. Then — following the definition of CRG — we try
to link each node pair randomly with a given probability p.
Strictly speaking, we go through all non-diagonal elements
of S and set s(i, j < i) equal to one with the probability
p. Obviously, the matrix S is kept symmetric. Each time,
when a new edge is added, we have to rebuild the whole
matrix S due to the link between nodes i and j:

∀1 ≤ m, n ≤ N : s(m, n) = min
(
s(m, n),

s(m, i) + 1 + s(j, n), s(m, j) + 1 + s(i, n)
)
. (2)

After such a procedure the matrix SN×N contains ele-
ments equal to N only if the graph is not connected.

One could ask if the order of updating the matrix ele-
ments could change the final result. Our answer is no, and
the argument is as follows. Adding an edge, say (m, n), we
have to check for each pair (i, j) the minimum of the fol-
lowing: s(i, j) before adding a new edge (m, n), which does
not contain this edge by definition; s(i, m)+1+s(n, j) and
s(i, n)+1+s(m, j). The path s(m, n) is represented above
as a unit. No other part s of the path selected as the mini-
mal one contains the edge (m, n); if the path does contain
it, it contains it twice and therefore it is not minimal. In
other words, there are two possibilities: either the minimal
path (i, j) does not contain the new edge (m, n), or it con-
tains it once. Then, all paths s used in equation (2) and
selected as minimal do not contain the new edge. Then,
they are not changed by adding this new edge. Therefore
the order of updating these parts is not relevant.

For a given matrix S we calculate the distribution of
node degree P (k) and the average distance ξ(k) to a node
for a given k. Note that the number ‘1’ in ith row/column
of the matrix S gives the degree of ith node. On the other
hand, the mean

∑N
j=1 s(i, j)/N of matrix elements in ith

row/column is the average distance ξi to that node.
The results are averaged over Nrun independent net-

works, i.e. various matrices SN×N .

3 Results and discussion

For the scale-free networks we reproduce P (k) ∝ k−γ

with γ ≈ 2.7, while the theoretical value is 3.0. The
numerical reduction of γ is known to be caused by the
finite-size effect [4,24]. For the exponential trees the node
degree distribution is verified to be P (k) = 2−k. The de-
gree distribution for CRG follows the Poisson distribution
P (k) = exp(−〈k〉) · 〈k〉k/k!, with 〈k〉 ≈ 20 and 〈k〉 ≈ 50
for p = 0.02 and p = 0.05, respectively.

In Figure 1 the average distance ξ(k) to a node with
a given degree k is presented. Each network contains at
least a thousand nodes. In Figure 2 the dependence η(k)
is shown. The results are averaged over Nrun = 107, 103

and 100 different networks for trees, simple graphs and
CRG, respectively.
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Fig. 1. The average distance ξ(k) to a node with given degree
k for different networks.

As it was explained at the end of the Introduction, the
most relevant are the left part of the curves η(k), where the
degree is small. In our search, the results for large k reflect
the fact that once the nodes of highest possible degree are
reached, a further search may not be efficient. (Note, that
in the simulation performed in Ref. [15], the search was
stopped once the distance from the desired node was one.)

For larger networks, the whole plots presented in Fig-
ures 1 and 2 are expected to be stretched toward larger val-
ues of k. However, this stretching is logarithmically slow.

In Figure 1 the results for trees with N = 103 and 104

are compared. The main difference is just the shift of the
curve upward when N increases. The slope of the curve,
η(k), is therefore roughly the same. The results show that
the investigated strategy (MCNS) is most effective for the
exponential trees, where m = 1. There, the value of the in-
dex η is the largest. This is true in particular about k = 10,
where η has a maximum. The existence of this maximum
does not depend on the size N of investigated networks.
However, for the exponential networks with m = 2, the
obtained values of ξ depend much weaker on the degree k.
There, the obtained values of η are comparable to those
of the scale-free trees. Here again, the size of the network
does not influence the results, but the increase of the num-
ber of links m from one to two leads to a further decrease
of the index η. Finally, for the random graphs the mean
distance ξ practically does not depend on k, and the in-
dex η is close to zero. These conclusions on the scale-free
networks and on the random graphs agree with the results
of reference [14], but MCNS applied in an exponential tree
is even more effective than in the scale-free tree.

The explanation of the result is as follows. In the scale-
free networks, local fluctuations of the degree are enhanced
by subsequent linkings. In this way, the structure becomes
heterogeneous: multiple centres of high degree can be cre-
ated, and the growth concentrates around these centres.
This hierarchical structure of the scale-free networks was
described recently in reference [25]. Then, MCNS can be
misleading, as it always leads to a local centre; however,
sometimes the target is somewhere else. This enhance-

Fig. 2. The dependence η(k) for (a) the exponential networks
and CRG (p = 0.02, 0.05 and 0.4) and (b) the exponential
trees and the scale-free trees. The numerical uncertainties are
smaller than the symbol size, except the last two bins for trees
for which uncertainties are huge and not shown.

ment is absent in the exponential networks, and that is
why MCNS works better there. We note that this argu-
mentation works well for trees. For other systems, there is
more than one path between each pair of nodes, and any
educated but general strategy cannot replace the knowl-
edge of where the target is.

Our new tool — the index η, defined above — seems
to be useful for comparing different kinds of networks. In
a purely geometrical sense, it gives the following informa-
tion: if a node has more edges, how much closer is it to
the network centre, where the mean distance ξ is minimal?
From this point of view, the structure of a given network
can be found to be more or less resistant to damage and/or
penetration. This problem is of potential relevance for nu-
merous applications, e.g. in computer science, sociophysics
and immunology [26–28].

As for our knowledge, the only example of the expo-
nential network is the electrical power grid in western US
[29]. However, we know examples where the preference of
linking is inverted: new nodes are more likely linked, than
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old ones. Such is the case of the diffusion-limited aggrega-
tion, known as DLA, which leads to a formation of fractal-
like dendritic molecules [30]. If such an anti-preference is
possible, it is sure that some networks also exist where
the preference is absent, or at least small. These latter
networks should be close to the exponential ones. For ex-
ample, suppose that a network of actresses is investigated,
the preference for old nodes could be weaker.

In conclusion, we have formulated a quantitative crite-
rion for evaluation the search strategy by linking to a most
connected neighbour. We demonstrated that this strat-
egy is more efficient for the exponential trees than for the
scale-free and random networks.
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